Evaluating a constant expression in multiple precision with a guaranteed error bound
نویسنده
چکیده
The evaluation of special functions often involves the evaluation of numerical constants. When the precision of the evaluation is known in advance (e.g., when developing libms) these constants are simply precomputed once for a while. In contrast, when the precision is dynamically chosen by the user (e.g., in multiple precision libraries), the constants must be evaluated on the fly at the required precision and with a rigorous error bound. Often, such constants are easily obtained by means of formulas involving simple numbers and functions. In principle, it is not a difficult work to write multiple precision code for evaluating such formulas with a rigorous roundoff analysis: one only has to study how roundoff errors propagate through subexpressions. However, this work is painful and error-prone and it is difficult for a human being to be perfectly rigorous in this process. Moreover, the task quickly becomes impractical when the size of the formula grows. In this article, we present an algorithm that takes as input a constant formula and that automatically produces code for evaluating it in arbitrary precision with a rigorous error bound. It has been implemented in the Sollya free software tool and its behavior is illustrated on several examples. Key-words: multiple precision, constant expression, rigorous error bounds, roundoff analysis, faithful rounding. in ria -0 05 37 93 5, v er si on 1 19 N ov 2 01 0 Évaluation d’expressions constantes en précision arbitraire avec bornes d’erreur garanties Résumé : L’évaluation de fonction spéciales nécessite souvent d’évaluer certaines constantes. Lorsque la précision est connue à l’avance (par exemple, lorsqu’on développe une libm), ces constantes sont simplement précalculées une fois pour toutes. Mais lorsque la précision est fixée par l’utilisateur au moment de l’évaluation (comme c’est le cas pour les bibliothèques en précision arbitraire), les constantes doivent être évaluées à la volée à la précision demandée et en bornant rigoureusement les erreurs. Souvent, ce genre de constantes est donné par des formules faisant intervenir des fonctions simples et des entiers. En principe, écrire du code en précision arbitraire pour évaluer ce genre de formule avec une analyse rigoureuse des erreurs d’arrondi n’est pas une tâche difficile. Il suffit d’étudier comment les erreurs d’arrondi se propagent à travers les sous-expressions. Cependant, ce travail est ingrat, délicat, et il est difficile pour un être humain de rester parfaitement rigoureux. De plus, la tâche devient vite inabordable lorsque la formule grossit. Dans cet article, nous présentons un algorithme qui prend en entrée une formule constante et qui produit automatiquement du code pour l’évaluer en précision arbitraire et avec une borne d’erreur rigoureuse. Nous l’avons implémenté de façon expérimentale dans l’outil libre Sollya, et nous illustrons son comportement sur plusieurs exemples. Mots-clés : précision arbitraire, expression constante, borne d’erreur rigoureuse, analyse d’erreur, arrondi fidèle. in ria -0 05 37 93 5, v er si on 1 19 N ov 2 01 0 Evaluating constant expressions in multiple precision 3
منابع مشابه
The Investigation of the Estimation Precision of Infiltration Equation Parameters Based on Soil Physics Characteristics for Furrow Irrigation
Furrow irrigation is the most common method of surface irrigation. However, the accurate estimation of the soil water infiltration equation is the most important challenge for evaluating this method of irrigation. In this study, a fast and simple method that is named soil intake families and presented by USDA-NRCS (RSIF), evaluated for estimation of the Kostiakove-lewis infiltration equation pa...
متن کاملA Study of Precision Forging of Steel Spur Gears: Upper Bound Model and Experiments
Precision forging process is widely used for the production of spur gears due to its advantages such as improved strength and surface finish, little waste of materials and reduction in the machining time of the gear. An important aspect of precision forging process is the load required to perform the process successfully and design the forging tools. In this research, a new kinematically admiss...
متن کاملA Comprehensive Performance Analysis of Direct Detection Receivers inWDMASystems
In this work the performance of a wavelength division multiple access (WDMA) system with direct detection receiver is investigated. For this purpose, the probability of error in a WDMA network with OOK modulation considering crosstalk, ISI, photo detector noise and thermal noise is calculated and the effect of each on system performance is investigated. The system performance in presence of PIN...
متن کاملComputable Error Bounds for Finite Element Approximation on Non-polygonal Domains
Fully computable, guaranteed bounds are obtained on the error in the finite element approximation which take the effect of the boundary approximation into account. We consider the case of piecewise affine approximation of the Poisson problem with pure Neumann boundary data, and obtain a fully computable quantity which is shown to provide a guaranteed upper bound on the energy norm of the error....
متن کاملOptimal Load of Flexible Joint Mobile Robots Stability Approach
Optimal load of mobile robots, while carrying a load with predefined motion precision is an important consideration regarding their applications. In this paper a general formulation for finding maximum load carrying capacity of flexible joint mobile manipulators is presented. Meanwhile, overturning stability of the system and precision of the motion on the given end-effector trajectory are take...
متن کامل